Part Number Hot Search : 
HER805P NTE750 63822 NTX1N 31M10 MAX485 05N03 AIB0618
Product Description
Full Text Search
 

To Download PA141 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HIGH VOLTAGE POWER OPERATIONAL AMPLIFIERS
PA141/PA142 * PA141A/PA142A
MICROTECHNOLOGY
HTTP://WWW.APEXMICROTECH.COM
(800) 546-APEX
(800) 546-2739
FEATURES
* * * * * * * MONOLITHIC MOS TECHNOLOGY LOW COST HIGH VOLTAGE OPERATION--350V LOW QUIESCENT CURRENT--2mA NO SECOND BREAKDOWN HIGH OUTPUT CURRENT--120 mA PEAK AVAILABLE IN DIE FORM--CPA141
APPLICATIONS
* * * * * PIEZO ELECTRIC POSITIONING ELECTROSTATIC TRANSDUCER & DEFLECTION DEFORMABLE MIRROR FOCUSING BIOCHEMISTRY STIMULATORS COMPUTER TO VACUUM TUBE INTERFACE
8-PIN TO-3 PACKAGE STYLE CE
TYPICAL APPLICATION
20R +175 2.2K 10pF A1
PA141/142
10-PIN SIP PACKAGE STYLE DW
Ref: APPLICATION NOTE 20: "Bridge Mode Operation of Power Amplifiers" R V IN 20R 20R +175 2.2K 10pF A2 R CL R CL
PA141/142
DESCRIPTION
The PA141/PA142 are high voltage monolithic MOSFET operational amplifiers achieving performance features previously found only in hybrid designs while increasing reliability. Inputs are protected from excessive common mode and differential mode voltages. The safe operating area (SOA) has no second breakdown limitations and can be observed with all type loads by choosing an appropriate current limiting resistor. External compensation provides the user flexibility in choosing optimum gain and bandwidth for the application. The PA141 is packaged in a hermetically sealed TO-3 and all circuitry is isolated from the case by an aluminum nitride (AlN) substrate. The PA142 is packaged in APEX's hermetic ceramic SIP package.
Rn Cn
PIEZO 180 TRANSDUCER 180 100 100 330pF 330pF
-175
LOW COST 660V p-p PIEZO DRIVE
-175
Two PA141/PA142 amplifiers operated as a bridge driver for a piezo transducer provides a low cost 660 volt total drive capability. The RN CN network serves to raise the apparent gain of A2 at high frequencies. If RN is set equal to R the amplifiers can be compensated identically and will have matching bandwidths.
EXTERNAL CONNECTIONS
R CL RC COMP 3 CC
2 COMP 1
EQUIVALENT SCHEMATIC
D1 Q1 Q2 Q3 Q4 (1) 5 -IN D2 (2) 6 +IN Q11 Q12 Q13 D3 D4 D5 Q5 (8) 2 Q6 COMP COMP Q8 (9) 3 Q7 4 (10) OUT I LIM 1 (7)
5
8 (6) +VS
PHASE COMPENSATION
I LIM
OUT
4
Gain 1 10 30
CS 330pF
CC 18pF 10pF 3.3pF
RC 2.2K 2.2K 2.2K
TOP VIEW
-IN
6
8
+IN
-VS
7
+VS
RS 100
CS ,CC ARE NPO RATED FOR FULL SUPPLY VOLTAGE. R CL = 3 I LIM
Q9
PA141
1 2 3 NC 4
TOP VIEW 5 6 +VS I LIM RS 100 CS 330pf 7 8 CC RC 9 CC 10 OUT
Q10 Q14 -VS 7 (5)
-IN +IN
NC -VS
CC RCL
PA142
5
PA141 PIN NUMBER
(1) PA142 PIN NUMBER
NOTE: PA141 Recommended mounting torque is 4-7 in*lbs (.45 -.79 N*m) CAUTION: The use of compressible, thermally conductive insulators may void warranty.
APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com
1
PA141/PA142 * PA141A/PA142A
ABSOLUTE MAXIMUM RATINGS
SUPPLY VOLTAGE, +VS to -VS OUTPUT CURRENT, continuous within SOA OUTPUT CURRENT, peak POWER DISSIPATION, continuous @ TC = 25C INPUT VOLTAGE, differential INPUT VOLTAGE, common mode TEMPERATURE, pin solder - 10 sec TEMPERATURE, junction2 TEMPERATURE, storage TEMPERATURE RANGE, powered (case)
ABSOLUTE MAXIMUM RATINGS SPECIFICATIONS
PA141/PA141A PA142/PA142A 350V 350V 60 mA 60 mA 120 mA 120 mA 12W 9W 16 V 16 V VS VS 300C 220C 150C 150C -65 to +150C -65 to +150C -40 to +125C -40 to +125C PA141A/PA142A MIN TYP MAX 15 40/* * * * * *
*
SPECIFICATIONS
PARAMETER INPUT OFFSET VOLTAGE, initial OFFSET VOLTAGE, vs. temperature4, 7 OFFSET VOLTAGE, vs supply OFFSET VOLTAGE, vs time BIAS CURRENT, initial7 BIAS CURRENT, vs supply OFFSET CURRENT, initial7 INPUT IMPEDANCE, DC INPUT CAPACITANCE COMMON MODE, voltage range COMMON MODE REJECTION, DC NOISE, broad band NOISE, low frequency GAIN OPEN LOOP at 15Hz BANDWIDTH, open loop POWER BANDWIDTH PHASE MARGIN OUTPUT VOLTAGE SWING CURRENT, peak5 CURRENT, continuous SETTLING TIME to .1% SLEW RATE CAPACITIVE LOAD RESISTANCE6, no load RESISTANCE6, 20 mA load POWER SUPPLY VOLTAGE3 CURRENT, quiescent THERMAL PA141 RESISTANCE, AC junction to case PA142 RESISTANCE, AC junction to case PA141 RESISTANCE, DC junction to case PA142 RESISTANCE, DC junction to case PA141 RESISTANCE, junction to air PA142 RESISTANCE, junction to air TEMPERATURE RANGE, case NOTES: * 1. 2. 3. 4. 5. 6. 7. TEST CONDITIONS1 MIN
PA141/PA142 TYP MAX 25 40 70 130 20 32 75 5/100 50/2000 .2/.5 .5/50 2.5/100 50/400 1011 5
UNITS mV V/C V/V V kh pA pA/V pA pF V dB V RMS V p-p dB MHz kHz V mA mA s V/s nF
Full temperature range
30 65/* * * * *
* * * * * * * * * *
VCM = 90V DC 10kHz BW, RS = 1K 1-10 Hz RL = 5K CC = 10pf, 280V p-p Full temperature range IO = 40mA CC = 10pF, 10V step, AV = -10 CC = OPEN AV = +1 RCL = 0 RCL = 0 See Note 3
VS-12 84
94 50 110 106 1.6 26 60
94
*
VS-12 VS-10 120 60 12 40 10 150 25 50 150 1.6 5.4 7 9 12 30 55 -25 175 2.0 6.5 10 10.4 14 +85
VS-10 VS-8.5 * * * * * * * * .9 * 1.4 * * * * * * * * 1.8 * * * * *
V mA C/W C/W C/W C/W C/W C/W C
F > 60Hz F > 60Hz F < 60Hz F < 60Hz Full temperature range Full temperature range Meets full range specifications
The specification for PA141A/PA142A is identical to the specification for PA141/PA142 in applicable column to the left. Unless otherwise noted TC = 25C, CC = 18pF, RC = 2.2K. DC input specifications are value given. Power supply voltage is typical rating. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF. For guidance, refer to heatsink data sheet. Derate maximum supply voltage .5 V/C below case temperature of 25C. No derating is needed above TC = 25C. Sample tested by wafer to 95%. Guaranteed but not tested. The selected value of RCL must be added to the values given for total output resistance. Specifications separated by / indicate values for the PA141 and PA142 respectively. The PA141/PA142 is constructed from MOSFET transistors. ESD handling procedures must be observed.
CAUTION
2
APEX MICROTECHNOLOGY CORPORATION * 5980 NORTH SHANNON ROAD * TUCSON, ARIZONA 85741 * USA * APPLICATIONS HOTLINE: 1 (800) 546-2739
TYPICAL PERFORMANCE GRAPHS
PA141/PA142 * PA141A/PA142A
CURRENT LIMIT
NORMALIZED CURRENT LIMIT, (%)
140 130 120 110 +I LIM 100 90 80 -50 -25 0 25 50 75 100 125 CASE TEMPERATURE, TC (C) 0 -30 -I LIM 60
INTERNAL POWER DISSIPATION, P(W)
POWER DERATING
15 12 9 6 T = TA 3 T = TA 0 0 25 50 75 100 TEMPERATURE, T (C) 125 T = TC PA141 T = TC PA142
CURRENT LIMIT
CURRENT LIMIT RANGE, I (mA)
40 20 0 -20 -40 -60
+I LIM
-I LIM
0 300 400 500 100 200 CURRENT LIMIT RESISTOR, R CL ( )
SMALL SIGNAL RESPONSE
120
PHASE RESPONSE
400 CC = 3.3pF CC = 10pF CC = 18pF
POWER RESPONSE
OUTPUT VOLTAGE, VO (VPP )
R L = 10K 200 CC = 10pF 100 80 60 40 CC = 18pF 20 10K 20K30K 50K .1M .2M .3M .5M FREQUENCY, F (Hz) CC = 3.3pF
OPEN LOOP GAIN, A(dB)
100 CC = 3.3pF 80 60 40 CC = 18pF 20 0 1 10 100 1K 10K .1M 1M 10M FREQUENCY, F (Hz) CC = 10pF
-60
PHASE, ()
-90 -120 -150 -180 -210 CC = 10pF 1 10 100 1K 10K .1M 1M 10M FREQUENCY, F (Hz) CC = 18pF CC = 3.3pF
-20
1M
HARMONIC DISTORTION
1.0 .6 .4 60 AV = 20 CC = 3.3pf R L = 2K VO = 30VPP VO = 180VPP VO = 60VPP 50
SLEW RATE
NORMALIZED QUIESCENT CURRENT, (%)
QUIESCENT CURRENT
150 130 110
SLEW RATE, V/s
DISTORTION, (%)
.2 .1 .06 .04 .02
40 30 20 10 0 0 4 8 12 16 20 COMPENSATION CAPACITANCE, C C (pf)
TC
90
5C =8
=2 5C
5C
.01 .006 .004 .002 100 200 1K 3K 10K 30K 100K FREQUENCY, F (Hz) 120 100 80 60 40 20 0 1 10 100 1K 10K .1M FREQUENCY, F (Hz) 1M
TC
70
TC
= -2
50 100 150 300 350 200 250 TOTAL SUPPLY VOLTAGE, VS (V)
COMMON MODE REJECTION, CMR (dB)
POWER SUPPLY REJECTION, PSR (dB)
COMMON MODE REJECTION
POWER SUPPLY REJECTION
120 100 80 60 40 20 0 1 10 100 1K 10K .1M FREQUENCY, F (Hz) 1M -VS +VS
VOLTAGE DROP FROM SUPPLY, VS - VO (V)
OUTPUT VOLTAGE SWING
18 16 14 12 10 8 6 4 2 0
- 85C
OUT
- OUT 25C - OUT -25C
T -25C +OU UT 85C +O
25C +OUT
0 40 60 80 100 120 20 OUTPUT CURRENT, I O (mA)
APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com
3
PA141/PA142 * PA141A/PA142A
GENERAL
Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.apexmicrotech.com for design tools that help automate tasks such as calculations for stability, internal power dissipation, current limit; heat sink selection; Apex's complete Application Notes library; Technical Seminar Workbook; and Evaluation Kits.
OPERATING CONSIDERATIONS
INPUT PROTECTION
The PA141/142 inputs are protected against common mode voltages up the supply rails and differential voltages up to 16 volts as well as static discharge. Differential voltages exceeding 16 volts will be clipped by the protection circuitry. However, if more than a few milliamps of current is available from the overload source, the protection circuitry could be destroyed. The protection circuitry includes 300 ohm current limiting resistors at each input, but this may be insufficient for severe overloads. It may be necessary to add external resistors to the application circuit where severe overload conditions are expected. Limiting input current to 1mA will prevent damage.
CURRENT LIMIT
For proper operation the current limit resistor, RCL, must be connected as shown in the external connection diagram. The minimum value is 18 ohms, however for optimum reliability the resistor value should be set as high as possible. The value can be estimated as follows with the maximum practical value of 500 ohms. 3 RCL = ILIM Use the typical performance graphs as a guide for expected variations in current limit value with a given RCL and variations over temperature. The selected value of RCL must be added to the specified typical value of output resistance to calculate the total output resistance. Since the load current passes through RCL the value selected also affects the output voltage swing according to: VR = IO * RCL where VR is the voltage swing reduction. When the amplifier is current limiting, there may be small signal spurious oscillation present during the current limited portion of the negative half cycle. The frequency of the oscillation is not predictable and depends on the compensation, gain of the amplifier, and load. The oscillation will cease as the amplifier comes out of current limit.
STABILITY
The PA141/142 has sufficient phase margin when compensated for unity gain to be stable with capacitive loads of at least 10 nF. However, the low pass circuit created by the sumpoint (-in) capacitance and the feedback network may add phase shift and cause instabilities. As a general rule, the sumpoint load resistance (input and feedback resistors in parallel) should be 5K ohm or less at low gain settings (up to 10). Alternatively, use a bypass capacitor across the feedback resistor. The time constant of the feedback resistor and bypass capacitor combination should match the time constant of the sumpoint resistance and sumpoint capacitance. The PA141/142 is externally compensated and performance can be tailored to the application. Use the graphs of small signal gain and phase response as well as the graphs for slew rate and power response as a guide. The compensation capacitor C C must be rated at 350V working voltage. The compensation capacitor and associated resistor RC must be mounted closely to the amplifier pins to avoid spurious oscillation. An NPO capacitor is recommended for compensation.
APEX MICROTECHNOLOGY CORPORATION * 5980 NORTH SHANNON ROAD * TUCSON, ARIZONA 85741 * USA * APPLICATIONS HOTLINE: 1 (800) 546-2739
4
OPERATING CONSIDERATIONS
PA141/PA142 * PA141A/PA142A
APPLICATION REFERENCES:
For additional technical information please refer to the following Application Notes: AN 1: General Operating Considerations AN 3: Bridge Circuit Drives AN 25: Driving Capacitive Loads AN 38: Loop Stability with Reactive Loads
SAFE OPERATING AREA (SOA)
The MOSFET output stage of this power operational amplifier has two distinct limitations: 1. The current handling capability of the die metallization. 2. The temperature of the output MOSFETs. NOTE: The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used.
200
OUTPUT CURRENT FROM +VS OR -VS, (mA)
PA141 SOA
120 100 300mS 50 40 30 20
DC
DC
200mS
DC
,T
C
=
85
C
,T
C
=
10
12
5
C
5 4 3 PULSE CURVES @ 10% DUTY CYCLE MAX 2 10 20 30 50 100 200 300 500 SUPPLY TO OUTPUT DIFFERENTIAL, VS -VO (V)
200
OUTPUT CURRENT FROM +VS OR -VS, (mA)
PA142 SOA
10 0 0m S
120
30 0m S
100
20
m
S
50 40 30 20
DC ,T
DC
DC
,T
C
=
C
=
85 C
12
10
5
C
5 4 3 PULSE CURVES @ 10% DUTY CYCLE MAX 2 10 20 30 50 100 200 300 500 SUPPLY TO OUTPUT DIFFERENTIAL, VS -VO (V)
This MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS or omissions. All specifi EMAIL prodlit@apexmicrotech.com APEX data sheet has been carefully checked and is believed to be reliable, however, no responsibility is assumed for possible inaccuracies(520) 690-8601 * cations are subject to change without notice. PA141/142U REV. A MARCH 2002 (c) 2002 Apex Microtechnology Corp.
5


▲Up To Search▲   

 
Price & Availability of PA141

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X